On the Hyperbolicity of Large-Scale Networks

نویسندگان

  • William Sean Kennedy
  • Onuttom Narayan
  • Iraj Saniee
چکیده

Through detailed analysis of scores of publicly available data sets corresponding to a wide range of large-scale networks, from communication and road networks to various forms of social networks, we explore a little-studied geometric characteristic of real-life networks, namely their hyperbolicity. In smooth geometry, hyperbolicity captures the notion of negative curvature; within the more abstract context of metric spaces, it can be generalized as δ-hyperbolicity or negative curvature in the large. This generalized definition can be applied to graphs, which we explore in this report. We provide strong evidence that large-scale communication and social networks exhibit this fundamental property, and through extensive computations we quantify the degree of hyperbolicity of each network in comparison to its diameter. By contrast, and as evidence of the validity of the methodology, applying the same methods to graphs of road networks shows that they are not hyperbolic, which is as expected. Finally, we present practical computational means for detection of hyperbolicity and show how the test itself may be scaled to much larger graphs than those we examined via renormalization group methodology. Using well-understood mechanisms, we provide evidence through synthetically generated graphs that hyperbolicity is preserved and indeed amplified by renormalization. This allows us to detect hyperbolicity in large networks efficiently, through much smaller renormalized versions. These observations indicate that δ-hyperbolicity is a common feature of large-scale networks, from IP-layer connectivity to citation, collaboration, co-authorship, and friendship graphs. We propose that δ-hyperbolicity in conjunction with other local characteristics of networks, such as the degree distribution and clustering coefficients, provide a more complete unifying picture of networks, and helps classify in a parsimonious way what is otherwise a bewildering and complex array of features and characteristics specific to each natural and man-made network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

Decentralized Adaptive Control of Large-Scale Non-affine Nonlinear Time-Delay Systems Using Neural Networks

In this paper, a decentralized adaptive neural controller is proposed for a class of large-scale nonlinear systems with unknown nonlinear, non-affine subsystems and unknown nonlinear time-delay interconnections. The stability of the closed loop system is guaranteed through Lyapunov-Krasovskii stability analysis. Simulation results are provided to show the effectiveness of the proposed approache...

متن کامل

A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem

Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...

متن کامل

Hyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3})$

The aim of this paper is to present a proof of the hyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3}), |c|>3$, on an its invariant subset of $mathbb{R}$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.0031  شماره 

صفحات  -

تاریخ انتشار 2013